

ForEverSafe Diego RICKENBACH

Travail de bachelor 2024

Filière Informatique et systèmes de communication - Orientation Systèmes informatiques embarqués

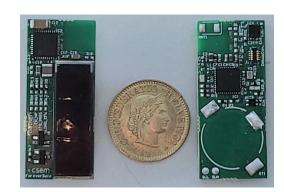
Professeur: Serge MONNERAT

Expert: Loïc ANDRE

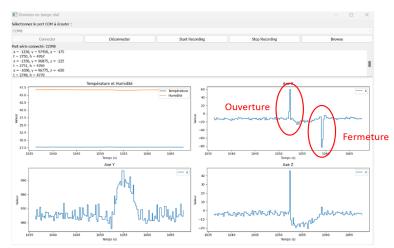
Description

Ce projet de Bachelor, proposé par l'entreprise CSEM et réalisé sous la supervision de Serge Monnerat, professeur, avec l'expertise de Loïc André, ingénieur au CSEM, vise à concevoir et développer un appareil autonome et intelligent intégré dans une fenêtre. Le dispositif doit détecter divers événements tels que les bris de glace, les chocs, ainsi que les ouvertures et fermetures de fenêtre, y compris en imposte. De plus, il doit transmettre, via Bluetooth BLE, l'état de la fenêtre, les valeurs des capteurs et les alarmes associées. Pour atteindre ces objectifs, l'appareil doit fonctionner de manière fiable et écoénergétique, en utilisant des capteurs avancés et des algorithmes de traitement pour analyser les données en temps réel.

Les principaux défis de ce projet sont d'ordre matériel et logiciel. Matériellement, il s'agit de miniaturiser le dispositif, de gérer les coûts et d'assurer une gestion efficace de l'énergie. Logiciellement, les défis incluent la mise en œuvre du Bluetooth LE Beaconing, la consommation ultra-basse et le traitement des signaux.


Déroulement

Tout au long de ce projet, plusieurs étapes clés ont été nécessaires, dont voici les principales :


- 1. Phase de Pré-Étude
- 2. Conception et Schéma Électrique
- 3. PCB Layout
- 4. Développement Logiciel
- 5. Tests et Validation

Résultats

Les résultats obtenus montrent que le dispositif développé est capable de détecter efficacement les bris de glace, les chocs et les ouvertures de fenêtre. Les données collectées par les capteurs sont transmises en temps réel via Bluetooth Low Energy (BLE), permettant une surveillance continue. Les tests ont validé la précision et la fiabilité des détections, ainsi que la robustesse de la communication BLE. Toutefois, des améliorations sont nécessaires pour résoudre les problèmes de communication I2C après la mise en veille du microcontrôleur et pour optimiser davantage la consommation énergétique du système.

PCB comparé à une pièce de 5 centimes

Traces des données

Discussion: Conclusions et perspectives

Ce projet a démontré la faisabilité d'un système autonome intégré dans une fenêtre pour détecter des événements comme les bris de glace et les ouvertures. Les objectifs principaux ont été atteints malgré des défis comme la communication I2C après mise en veille. Les prochaines étapes incluent l'optimisation de la consommation énergétique et la résolution des problèmes de communication.